

© 2019 Arxan. All rights reserved. Reproduction of this white paper by any means is strictly prohibited.

In Plain Sight II: On the Trail of Magecart

AUGUST 2019

Prepared for:

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

2

TABLE OF CONTENTS
EXECUTIVE SUMMARY .. 3

INTRODUCTION .. 5

METHODOLOGY .. 5

HISTORY .. 7

HOW IT WORKS ... 9

DEMYSTIFYING MAGECART .. 13

MONETIZATION .. 14

NOT IF THEY COME, BUT WHEN ... 14

SOLUTIONS ... 15

ENTER ARXAN ... 15

DECODING WEB APP PROTECTION ... 16

FACING THE DEVIL’S ADVOCATE ... 16

MONITORING .. 17

LAB .. 18

VICTIMOLOGY ... 24

CONCLUSION .. 29

ABOUT AITE GROUP.. 30

AUTHOR INFORMATION ... 30

CONTACT ... 30

LIST OF FIGURES
FIGURE 1: SCREENSHOT OF A CARD SKIMMER FOR SALE ON HACKERSHOMEPAGE.COM 7

FIGURE 2: PHOTO OF WORKING CARD SHIMMER .. 8

FIGURE 3: OBFUSCATED JAVASCRIPT DISCOVERED IN AN ACTIVELY COMPROMISED SITE 9

FIGURE 4: DECODED HEX FORMJACKING SCRIPT ... 10

FIGURE 5: FLOWCHART OF A MAGECART FORMJACKING ATTACK BETWEEN THE GROUP AND VICTIMS ... 12

FIGURE 6: LAB ARCHITECTURE FOR A FORMJACKING ATTACK ... 18

FIGURE 7: BENIGN WEB FORM CONTAINING NO FORMJACKING SCRIPT .. 19

FIGURE 8: COMPROMISED FORM CONTAINING FORMJACKING SCRIPT .. 20

FIGURE 9: FREE JAVASCRIPT OBFUSCATOR .. 21

FIGURE 10: FORM CONTAINING THE OBFUSCATED FORMJACKING CODE .. 22

FIGURE 11: SAMPLE CREDIT CARD INFORMATION GRABBED BY THE FORMJACKING CODE 23

FIGURE 12: MY CREDIT CARD BEING SUBMITTED TO THE SEPARATE STAGING SERVER AT CHECKOUT 25

FIGURE 13: MALICIOUS JAVASCRIPT INSERTED INTO DOM IN WEB BROWSER ON A FORMJACKED SITE ... 26

FIGURE 14: FORMJACKED WEBSITE LEVERAGING WINDOW ATOB() ... 27

FIGURE 15: COMPROMISED LUXURY E-COMMERCE RETAIL SITE... 28

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

3

EXECUTIVE SUMMARY

In Plain Sight II: On the Trail of Magecart, commissioned by Arxan Technologies and produced by

Aite Group, is the final installment of the of the In Plain Sight series designed to demonstrate the

massive attack surface created by electronic commerce (e-commerce) web applications that

aren’t being properly secured with in-app protection. The absence of in-app protection, such as

code obfuscation and tamper detection, makes web apps vulnerable to a type of cyberattack

called formjacking. Formjacking is a type of breach, such as those experienced by Forbes and

British Airways, whereby Magecart group hackers inject the e-commerce checkout form with

malicious code that sends buyers’ credit card information to an offsite server under the hackers’

control.

This research follows the trail of servers compromised by Magecart groups, as well as the

collection servers to which the sites were actively sending stolen credit card data, in an effort to

examine commonalities between victim websites and the tactics, techniques, and procedures

used to compromise the servers. Arxan and Aite Group worked with federal law enforcement to

notify the 80 victim sites discovered during this research as well as the staging sites used by the

Magecart groups to collect the stolen data.

Because these web applications are lacking in-app protection, adversaries are able to easily

debug and read a web app’s JavaScript or HTML5 in plain text. Once the web app code is

understood, malicious JavaScript is then inserted into the webpages of the target server that

delivers the web checkout form. Once weaponized, these credential pages will simultaneously

send a consumer’s credit card information to an offsite server under the control of the Magecart

group and allow the compromised site to process the credit card, so the consumer and the

organization are unaware of the theft.

What was uncovered in this research is e-commerce websites’ systemic lack of in-app protection

to secure their web forms and the failure of endpoint security solutions on the client side to

protect consumers against this pervasive threat.

Key takeaways from this study include an understanding of the following:

• Who the Magecart groups are

• What formjacking is

• The Magecart groups’ latest tactics and techniques to compromise e-commerce sites

• How stolen credit cards are sold on the dark web’s black markets

• The obfuscated JavaScript found on actively compromised sites that was discovered

in the intelligence collection process during this research

• Reshipping scams and mule handlers

• How in-app protection that employs both code obfuscation and tamper detection

can alert to and prevent formjacking

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

4

• How a vulnerability and patch management program can be used to prevent the

initial exploitation of the shopping cart sites that led to the formjacking

• How server-side injection attacks and resulting client-side execution of the

compromised JavaScript in the DOM is used to capture the credit card data skimmed

from the weaponized forms on hijacked sites

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

5

INTRODUCTION

The global e-commerce market is projected to grow 20.7% in 2019 to US$3.535 trillion and

approach US$5 trillion by 2021.
1
 With increasing demand for improved customer experiences to

reduce friction in the purchase process, organizations reliant on e-commerce websites to drive

revenue are focusing on site performance and speed, leaving critical security measures behind.

As a result, threats targeting vulnerabilities in e-commerce infrastructure are on the rise. Virtual

credit card skimmers—also known as formjacking—are often found in obfuscated JavaScript on

compromised e-commerce content management systems such as Magento and Shopify.
2

International crime syndicates such as Magecart groups use formjacking to steal credit cards to

either sell as “fullz” on the black market or to purchase goods and traffic them to eastern Europe

using merchandise mules.

This white paper examines the tactics and techniques used by these groups to target and steal

credit card information from these sites as a result of the systemic absence of protection in e-

retailers’ web applications and how current endpoint security solutions, such as antivirus and

endpoint detection and response (EDR) fail to protect consumers DOM-based threats. This

research then distills the solution to this problem and reveals how these e-commerce sites can

protect themselves against this threat.

METHODOLOGY

The data forming the basis of this report was collected and analyzed by Aite Group using primary

research methods to understand how e-commerce sites are at risk from today’s threats. To

conduct this research, Aite Group used a source code search engine that scoured the web for

obfuscated JavaScript that was found in repeating patterns of previously published Magecart

breaches on pastebin.com.

This led Aite Group on a journey to discover over 80 compromised e-commerce sites globally

that were actively sending credit cards used on the site to offsite servers under the control of the

Magecart groups (sometimes the same website was compromised by more than one group).

Aite Group was able to reveal the vulnerabilities that the group exploited to gain unauthorized

access to the site and to inject the formjacking code into the site’s checkout form. After

decoding the JavaScript, Aite Group followed the trail to the servers where the credit cards were

being harvested, analyzed the scripts collecting the data at the staging sites, and worked in

cooperation with the FBI to notify victims and perform takedowns of the staging servers.

As part of this primary research, Aite Group captured the packets sent from compromised

websites to the staging servers on our lab systems to demonstrate the two directions the credit

1. Andrew Lipsman, “Global Ecommerce 2019,” eMarketer, June 27, 2019, accessed August 6, 2019,

https://www.emarketer.com/content/global-ecommerce-2019.

2. Catalin Cimpanu, “JavaScript Card Sniffing Attacks Spread to Other E-Commerce Platforms,” ZDNet,
May 2, 2019, accessed August 6, 2019, https://www.zdnet.com/article/javascript-card-sniffer-attacks-
spread-to-other-e-commerce-platforms/.

https://www.zdnet.com/article/javascript-card-sniffer-attacks-spread-to-other-e-commerce-platforms/
https://www.zdnet.com/article/javascript-card-sniffer-attacks-spread-to-other-e-commerce-platforms/

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

6

card information was moving during the checkout process. Aite Group’s lab systems were also

used to derive an explanation of the script execution in the local hosts’ Document Object Model

(DOM), which were running an EDR solution and anti-virus agent, both of which failed to notify

us of the malicious JavaScript.

Eighty compromised servers were analyzed as part of this research for companies in the United

States, Canada, Europe, Latin America, and Asia.

Due to the discovery of actively compromised sites and servers, all affected organizations have

been officially notified in cooperation with the FBI’s cyber division prior to the publishing of this

paper.

This report was also based on secondary desk research, in particular on publications from
RiskIQ, Flashpoint, Brian Krebs, Anomali, Malwarebytes, as well as on breach dumps found on
Pastebin.

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

7

HISTORY

Prior to physical card skimmers and the virtual skimmers used in formjacking, victims knew they

were being robbed. If a gun-wielding masked marauder took a person’s wallet or purse, the

victim would quickly cancel their cards. Weren’t those simpler times?

Then the concept of ATM and other point-of-sale (POS) card skimmers appeared, introducing

consumers to the new world of being robbed at trusted ATMs or gas station pumps without

knowing it—a sort of silent theft.

A card skimmer is a physical device that can be bought for as little as US$275 on sites such as

incodenet.com or for US$299 on the hackershomepage.com, as shown in Figure 1.

Figure 1: Screenshot of a Card Skimmer for Sale on Hackershomepage.com

Source: hackershomepage.com

Card skimmers (both virtual and physical) sit silently, undetectable unless you take the physical

machine apart. Victims often don’t know they are skimmed until it is too late. With the

introduction of chip-and-PIN cards in the United States, fraudsters evolved to creating devices

called “shimmers,” which leverage a paper-thin device or “shim” (Figure 2) enabled with a

microchip and flash storage that sit directly in the dip-and-wait slot on card readers that accept

chip-enabled cards. The shim then copies and saves the information from the chip, which can

then be used to create a version of the card with a magnetic stripe. The newly minted card can

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

8

be used with retailers and e-commerce sites that still accept such cards, which is pretty much

every retailer that accepts credit cards in the United States. Use of chip-and-PIN cards is not

compulsory in the U.S.

These card skimmers are capable of reading not only the magnetic stripe and chip of the card

but also the PIN entered at the machine.

Figure 2: Photo of Working Card Shimmer

Source: techcrunch.com

With the growth of e-commerce spending, online fraud is on the rise due to three trends based

on our research:

• Card-not-present fraud when stolen credit card credentials are used to purchase

goods or services online

• The industry-wide directive for all credit cards to use chip and PIN to transact

business, known as card-present transactions, which has transitioned a majority of

card-present transaction fraud to card-not-present fraud globally

• The emergence of new techniques being used to steal information and credentials

online, such as formjacking

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

9

HOW IT WORKS

Formjacking is a relatively new form of digital information theft from websites that transmit,

process, or store payment card information, banking data, and other material such as

consumers’ personally identifiable information (PII). After analyzing an organization’s web

payments page, bad actors can create or buy a few lines of malicious code (Figure 3) that can be

inserted onto the server-side payment checkout form.

Figure 3: Obfuscated JavaScript Discovered in an Actively Compromised Site

Source: Aite Group

Malicious JavaScript can be encoded (not encrypted) using Base64, XML, or Hex, to name just a

few, in order to make the malicious code unreadable. This obfuscation hides the malicious code

in plain sight since most administrators don’t look in their source code for obfuscated JavaScript

and then decode it using a Base64 decoder in order to determine if its legitimate. Magecart

groups have even begun getting smarter by using timing as well as code signing to detect

analysis and tampering of their malicious code once it’s injected into a web form.

When consumers enter their credit card data into the form, the transaction is completed, so the

consumer and the organization only see a legitimate business transaction. But this data is also

simultaneously logged to a local file for later transmission or sent directly to a server under the

bad actor’s control—all with just a few lines of code embedded in the web form.

Figure 4 shows another compromised site discovered during this research where Hex was used.

This formjacking code was found right above another group’s code, indicating the site had been

compromised by two separate groups at the same time.

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

10

Figure 4: Decoded Hex Formjacking Script

Source: Aite Group

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

11

All compromised payment card transactions are successfully completed and forwarded on to the

payment processor, processed, and either approved or declined by the financial institution—

without either victim being aware of the card skim. Figure 5 illustrates this process.
3,4

1. Attacker finds vulnerabilities in a target e-commerce website.

2. Attacker injects malicious code into the e-commerce checkout page that executes in

the web browser of an unsuspecting shopper, who inserts credit card details into the

form.

3. Victim shopper arrives at the newly weaponized site, selects goods to purchase, and

inputs the credit card number into the paywall checkout form.

4. The malicious code (obfuscated JavaScript) then executes in the victim’s browser,

capturing the form field data, and sends the credit card and PII to a separate server

under control of the attacker.

5. The attacker then grabs the stolen credit card data off the server.

6. The attacker then monetizes the fullz (a term used by carding groups to refer to full

primary account number, card holder contact information, credit card number, card

verification code [CVC], and expiration date) and sells it on the dark web.

7. The attacker then purchases merchandise on legitimate online shopping sites, and

ships them to pre-selected merchandise mules (typically work-at-home individuals)

who are recruited for reshipping scams.

8. The attacker has the purchased items shipped to their merchandise mules. To recruit

merchandise mules, the attacker posts jobs that offer people the ability to work

from home and earn large sums of money to receive and reship merchandise

purchased with the stolen credit card numbers.

9. The mules then work with shippers willing to receive under-the-table pay to ship to

eastern European addresses, which are in countries on the sanctioned shipping

destinations for the Office of Foreign Assets Control (OFAC) regulations.

10. The under-the-table shippers then ship the merchandise to the eastern European

destinations, where it is sold to local buyers, which the attacker also profits from as

a second line of revenue from the original breach in addition to the sale of the fullz

on black market sites.

3. Yonathan Klijnsma, Vitali Kremez, Jordan Herman, “Inside Magecart: Profiling the Groups Behind the

Front Page Credit Card Breaches and the Criminal Underworld That Harbors Them,” RiskIQ and
Flashpoint, 2018, accessed August 29, 2019, https://www.riskiq.com/research/inside-magecart/.

4. Krebs on Security, “Money Mule Gangs Turn to Bitcoin ATMs,” Krebs on Security, September 29, 2016,
accessed August 29, 2019, https://krebsonsecurity.com/tag/money-mules/.

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

12

Figure 5: Flowchart of a Magecart Formjacking Attack Between the Group and Victims

Source: Aite Group (inspired by a similar chart created by RiskIQ and Flashpoint as well as by Brian Krebs)

According to a Symantec report released in February of this year, more than 4,800 websites are

affected by some inculcation of formjacking code every month,
5
 underscoring a lucrative new

business model for fraudsters on the internet.

Formjacking code is employed on the server side and executed as JavaScript in the victim’s web

browsers on the client side. On the web server running the e-commerce website itself is where

the malicious code is inserted and renders/executes in the web browser of the victim. The credit

card details are then sent from the victim’s computer to the staging server owned by the hacker.

Formjacking can be detected and prevented using different means: One is to use an in-app

security solution including code obfuscation, debugging, and tamper detection so that if an

adversary views the web form, the adversary can’t inject malicious JavaScript into the code and

will instead move on to another site that doesn’t employ such security controls.

Despite the prevalence of large companies being breached and having their web forms

compromised with malicious code to steal payment card information, attackers are also

targeting the suppliers that tie into these larger companies. These are referred to as “supply

chain attacks.”

5. “Internet Security Threat Report

2019,” Symantec, accessed August 6, 2019,

https://resource.elq.symantec.com/LP=6819?CID=70138000001QvI4AAK.

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

13

DEMYSTIFYING MAGECART

Despite the widespread misperception that Magecart is a single group or tool, it is in fact a
reference to numerous groups targeting electronic commerce sites globally and rapidly
compromising them. These groups’ tactics and techniques are sophisticated and continuously
evolving as they are discovered. They use encoded JavaScript and in some cases even implement
tamper detection checks in the code. In a Magecart-compromised site, the malicious JavaScript
is designed to send the form-field data containing the payment card information to an off-site
server under the control of the Magecart group while still allowing the payment card to be
processed by the compromised site; the victim and the site remain unaware of the skim.

Magecart groups are to blame for many high-profile breaches over the past few years and have

attacked Forbes, Ticketmaster, and British Airways, just to name a few victims.
6
 The growing

number of alternative, more secure payment methods at checkout counters and storefronts,
such as Apple Pay, Android Pay, and tap-to-pay contactless cards, have moved fraudsters to
formjacking instead, since much of the storefront foot traffic has migrated to e-commerce.

These Magecart groups are being tracked and monitored by several threat intelligence firms,
whose pre-eminent research over the past decade informed my building of many of the
repeating code patterns I used to track down the newly compromised sites in cooperation with
the FBI.

6. Yonathan Klijnsma, Vitali Kremez, Jordan Herman, “Inside Magecart: Profiling the Groups Behind the

Front Page Credit Card Breaches and the Criminal Underworld That Harbors Them,” RiskIQ and
Flashpoint, 2018, accessed August 29, 2019, https://www.riskiq.com/research/inside-magecart/.

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

14

MONETIZATION

Once Magecart groups have collected their skimmed cards—either from log files on the

breached server or to an offsite staging server under their control—they monetize them in

numerous ways. One way is via dark web markets, such as Empire Markets, Dream Markets, Wall

Street Markets, E-Shop, BigDeal, and Vahalla.

Alternatively, Magecart groups will use fake job ads to recruit U.S. residents to take part in

reshipping scams. These merchandise mules repackage and reship “carded” electronics to

eastern Europe through disreputable shipping companies that are breaking U.S. laws to ship the

stolen goods.

NOT IF THEY COME, BUT WHEN

While the cost of a cyberattack is often discussed, we seldom hear about just how common

these attacks actually are. Many security experts believe that a cyberattack or breach of

catastrophic proportions is no longer a matter of if—but when. In fact, the World Economic

Forum’s 2018 Global Risks Report identifies cybersecurity as a top threat, along with economic,

political, and environmental concerns.

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

15

SOLUTIONS

Now that the problem has been defined, I’ll demystify the measures that e-commerce sites can

take to increase their resiliency against it.

• E-commerce sites should have a well-documented and regularly updated vulnerability

and patch management process that includes regular patching of, updates to, and

penetration testing of the company’s e-commerce site(s).

• These site owners need to implement in-app protection, such as the solution provided

by Arxan, which implements code obfuscation and white-box cryptography to make the

web forms unreadable to the adversary.

• Implementing a solution that detects unauthorized modification of website files is

another valuable action.

• E-commerce sites can monitor traffic to ensure the web server is not initiating outbound

connections, which, unless it’s downloading updates, should never happen under

normal operating conditions.

ENTER ARXAN

In this section, I will cover each layer of security employed by Arxan for Web in detail. This

section will then demonstrate how it works in a real-world lab of an e-commerce website by

playing the role of an adversary using malicious JavaScript to scrape the payment card

information out of a pay wall and send it to an offsite server.

Arxan employs its in-app protection for web using different capabilities to secure the site from

formjacking:

• Injection of application code protections and threat detection sensors after code

development

• Static protection by obfuscation of JavaScript source code, making it harder for

attackers to understand, analyze, and reverse engineer/tamper

• Real-time alerting to notify organizations when analysis and code tampering have

been attempted, covering all app components on both the server-side and and the

client-side web browser (DOM, HTML, JavaScript) via Arxan Threat Analytics to

quarantine suspicious accounts and update code protections

• Active protection that shuts down a victim’s browser in the event of code analysis,

tampering, or malware attacks

I break these capabilities down further in the following sections.

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

16

DECODING WEB APP PROTECTION

In-app protection solutions are implemented within the application (instead of the network or

the operating system, for example) to make the application more resilient to attacks such as

malicious data exfiltration, intrusion, tampering, and reverse engineering.

Arxan’s solution provides in-app protection for all attack surfaces, including websites, using code

obfuscation along with debugger and tamper detection. While time and persistence can enable

an adversary to decode any encoded text, the added layers of security that Arxan employs using

tamper detection, its active response of shutting down the client’s browser, its ability to repair

the compromised code, and its real-time threat detection and alerting creates enough friction

for Magecart groups that they’ll just move on to an easier target whose web form isn’t

protected.

JavaScript is a scripting language that allows administrators to implement dynamically updating,

interactive content on websites, such as content updates, interactive maps, animated graphics,

and more, as opposed to just displaying static information. Protecting JavaScript code is vital to

defending against server-side attacks and credential theft. JavaScript is an interpreted language,

not a compiled one, which means that unless additional steps are taken to enforce

confidentiality of the JavaScript code, it can be easily intercepted, viewed, and modified. Arxan

for Web is in-app protection for JavaScript and instruments web applications to detect and alert

on these kinds of threats.

The ability to detect and alert on active threats by spotting debugger-based reverse engineering

or HTML page (DOM) attacks is essential to getting in front of web application attacks.

Arxan’s unique approach enables devops teams to insert code protections and threat detection

sensors into the application after the development of the code, but prior to release to eliminate

friction in the devops process.

Should a Magecart group gain unauthorized access to the web application server, the solution

can stop the breach before the injected skimmer code modifies the web application by notifying

the organization that code analysis and tampering has been detected on its web application. The

organization can then take appropriate measures to quarantine suspicious accounts and update

code protections.

As an added layer of static protection, Arxan for Web is also able to obfuscate web application

source code, making it more challenging for adversaries to understand, analyze, and reverse

engineer in order to insert their malicious skimmer script. If a determined adversary is capable

of inserting script into the form, Arxan for Web is able to detect the analysis and code

tampering, and is able to take autonomous response actions, even shutting down the browser of

the user viewing the form.

FACING THE DEVIL ’S ADVOCATE

Some criticize code obfuscation as being easily thwarted and contend that it is therefore not the

solution to the problem. I argue that this is a correct assessment of code obfuscation but not of

Arxan’s solution because of how the company has implemented it. Arxan has not brought a one-

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

17

trick pony to market that just obfuscates the code—organizations can use a number of free

solutions for this. But Arxan has combined multiple layers of security that do more than just

obfuscate code; its code integrity monitoring also detects reverse engineering and even

unauthorized changes to the code and addresses the problem through real-time alerting, even

going as far as monitoring for malicious DOM injection on the client-side browser.

I would further opine that there is no such thing as a silver bullet to any one type of attack in

cybersecurity. There’s only applying as many network and endpoint security controls as possible,

coupled with ongoing security awareness training for staff and developers to position a

company’s enterprise to be more resilient to attack. When the breach does happen, the

organization should then be better positioned to detect it as quickly as possible (lowering the

dwell time) and limit the collateral damage through proper network segmentation.

MONITORING

While each layer of the Arxan for Web stack is useful on its own, it’s much more than the sum of

its parts. The key is implementing them together, with the realization that a determined

adversary will eventually execute successfully on all tactics and techniques they employ, and

thus the final stage of the solution is monitoring for, responding to, and adapting to a detected

breach.

The key is knowing what tactics and techniques adversaries employ by monitoring for them,

such as debugging and analysis, and automatically repairing scripts that are modified without

authorization. The final layer in the Arxan solution stack is providing real-time notifications of

adversaries employing reconnaissance, code tampering, and reverse engineering tools so

security analysts can take immediate response actions to the alerts or tie them in to security

orchestration and response solutions that execute on predefined playbooks upon detection of

these events.

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

18

LAB

The lab section of this research was designed to show how easy formjacking attacks are to

employ, how they are conducted, and how widespread of a problem they are.

In this lab, I’ve deployed a simple web form that takes user input, such as cardholder

information, PAN, CVC, and an expiration date, in order to process a payment. I’ve inserted

malicious JavaScript into the code that logs keystrokes in the form fields and sends the data to an

offsite server I’ve setup in Amazon Web Services (AWS).

The architecture for the lab is diagrammed in Figure 6.

Figure 6: Lab Architecture for a Formjacking Attack

Source: Aite Group

The steps in this lab were as follows:

1. Creation of a web form for the user input fields of the credit card information (Figure

7).

2. Assuming the role of an adversary who has a foothold on the server, malicious

JavaScript was inserted into the <head> tags of the form (Figure 8).

3. Using a free JavaScript obfuscator, such as obfuscator.io, malicious JavaScript was

inserted into the web site to receive an obfuscated version to insert into the hijacked

form (Figure 9).

4. The obfuscated code was inserted into the hijacked form (Figure 10).

5. Visiting the weaponized form, JavaScript executed in the DOM, sending the content

in the form fields to the log file (Figure 11).

1
2
3

Hacker and
victim shopper

E-commerce site
4

AWS

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

19

6. The formjacked credit card information was retrieved from the third-party server.

Figure 7: Benign Web Form Containing No Formjacking Script

Source: Aite Group

In Figure 8, the form has been compromised: Formjacking code was inserted into the form.

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

20

Figure 8: Compromised Form Containing Formjacking Script

Source: Aite Group

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

21

Figure 9 is a screenshot of a popular JavaScript obfuscator tool that can be used to apply an

obfuscation technique similar to those we’ve covered in this paper. The JavaScript I pasted into

this window was used in the lab.

Figure 9: Free JavaScript Obfuscator

Source: obfuscator.io

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

22

Figure 10: Form Containing the Obfuscated Formjacking Code

Source: Aite Group

Figure 11 shows that the code has written the credit card information entered into the form into

a text file called data.txt.

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

23

Figure 11: Sample Credit Card Information Grabbed by the Formjacking Code

Source: Aite Group

Numerous vulnerabilities were used by the Magecart groups to breach the eighty sites

discovered in this research. One of the numerous vulnerabilities many of these sites were

vulnerable to is related to the way Magento handles video content and the retrieval of the

preview image.

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

24

VICTIMOLOGY

In the next section, I describe discovering 80 active server compromises that have been

formjacked and are redirecting payment card information from the checkout form to a separate

server under the control of the Magecart group. This effort was made in order to understand the

similarities between the compromised servers. The most common similarity, despite some sites

running Shopify, is the use of Magento. All of the sites running Magento are running old versions

that are vulnerable to an unauthenticated upload and remote code execution vulnerability that

has published exploits available.

The latest version of Magento Community Edition is version 2.1.7. Many of the compromised

sites are running version 1.5, 1.7, or 1.9. The arbitrary file upload, remote code execution, and

cross-site request forgery vulnerabilities all affect Magento version 2.1.6 and below. While it

can’t be stated authoritatively that this is what led to the breach of these sites, these are

vulnerable versions of Magento that allow adversaries to inject the formjacking code into the

site. Indeed, while updating the sites to the latest version is important, keeping on top of

updates does not necessarily keep the site safe from unreleased “zero day” vulnerabilities that

the industry isn’t yet aware of, which is where the other security controls discussed provide the

needed reinforcements.

During this exercise, I was able to identify repeating patterns in sites currently compromised by

Magecart and using a script, I discovered other sites containing that same formjacking code. In

just 2.5 hours, I was able to uncover 80 actively compromised sites and four different collection

servers where those sites were sending formjacked credit card data.

The most common similarity across the 80 sites is the use of Magento. All of them are running

old versions that are vulnerable to an unauthenticated upload and remote code execution

vulnerability that has published exploits available for it.

The latest version of Magento Community Edition is version 2.1.7. Many of the compromised

sites are running version 1.5, 1.7, or 1.9. The arbitrary file upload, remote code execution, and

cross-site request forgery vulnerabilities all affect Magento version 2.1.6 and below.

One hundred percent of the 80 sites discovered had no in-app protection implemented, such as

tamper detection and code obfuscation. Twenty-five percent of the sites discovered were large,

reputable brands in the motorsports industry and high fashion.

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

25

In Figure 12 below, I’m visiting a live formjacked web site for a microsite of a major retailer. In
the left window I’ve highlighted my fake credit card number being submitted to the collection
server for the Magecart group using a tool that shows the new TCP socket opened to transmit
the data to their staging server over HTTP while it was also submitted to the legitimate retailer
for processing my order. The right-hand windows show the actual HTTP request and obfuscated
JavaScript that executed inside my local DOM.

Figure 12: My Credit Card Being Submitted to the Separate Staging Server at Checkout

Source: Aite Group

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

26

Figure 13 shows the malicious JavaScript found inside the DOM window of my local web
browser on another live formjacked site actively harvesting and sending credit card data to a
third-party collection server.

Figure 13: Malicious JavaScript Inserted Into DOM in Web Browser on a Formjacked Site

Source: Aite Group

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

27

Figure 14 shows another live formjacked site. While not always used for malicious purposes, the
window atob() method is used for decoding a base-64 encoded string. It is used to decode a
string of data which has been encoded using the btoa() method, returning a string which
represents the decoded string.

Figure 14: Formjacked Website Leveraging window atob()

Source: Aite Group

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

28

Figure 15 shows a screenshot from a breached luxury fashion site that was discovered during
this research campaign.

Figure 15: Compromised Luxury E-Commerce Retail Site

Source: Aite Group

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

29

CONCLUSION

• While the threat of formjacking can’t be completely eliminated, it’s important to

implement as many layers of security as possible to cause enough friction for

adversaries that they’ll move on to easier targets.

• Companies should have a clearly documented and regularly updated patch and

vulnerability management policy that ensures e-commerce applications, especially

content management systems such as Magento or Shopify, are regularly patched

and kept updated as new releases are published.

• Companies should be performing regular penetration testing of their e-commerce

sites, identifying and fixing vulnerabilities before the adversaries find them.

• Because obfuscated code can be de-obfuscated, it’s important to adopt solutions

that implement multiple layers of security, such as detection of code tampering and

analysis, an active response that shuts a browser down upon detection of

formjacking, and threat detection along with real-time alerting and response—not

just obfuscation.

• Companies should be monitoring the security of their internet-facing servers and

alerting to unusual traffic originating from the servers to IP addresses on the

internet.

• The threat of formjacking is a widespread and growing problem. The problem will

get worse before it gets better. Organizations running e-commerce sites shouldn’t

deploy their paywall until they’ve implemented an in-app protection solution that

makes it as difficult as possible for an adversary to inject malicious code into the

checkout process.

• With large organizations such as British Airways, Forbes, Ticketmaster, and others as

victims, no company is immune to the threat of Magecart and similar groups using

formjacking as a new tactic for stealing credit card data and PII. An in-app protection

solution not only protects your organization and your customers from this threat

simply and easily, but also eliminates friction for the developers who implement it so

they can focus on writing code.

In Plain Sight II: On the Trail of Magecart AUGUST 2019

© 2019 Arxan. All rights reserved. Reproduction of this report by any means is strictly prohibited.

30

ABOUT AITE GROUP

Aite Group is a global research and advisory firm delivering comprehensive, actionable advice on

business, technology, and regulatory issues and their impact on the financial services industry.

With expertise in banking, payments, insurance, wealth management, and the capital markets,

we guide financial institutions, technology providers, and consulting firms worldwide. We

partner with our clients, revealing their blind spots and delivering insights to make their

businesses smarter and stronger. Visit us on the web and connect with us on Twitter and

LinkedIn.

AUTHOR INFORMATION

Alissa Knight

+1.206.765.7434

aknight@aitegroup.com

CONTACT

For more information on research and consulting services, please contact:

Aite Group Sales
+1.617.338.6050

sales@aitegroup.com

For all press and conference inquiries, please contact:

Aite Group PR

+1.617.398.5048

pr@aitegroup.com

For all other inquiries, please contact:

info@aitegroup.com

http://aitegroup.com/
https://twitter.com/AiteGroup
https://www.linkedin.com/company/aite-group
mailto:aknight@aitegroup.com
mailto:sales@aitegroup.com
mailto:pr@aitegroup.com
mailto:info@aitegroup.com

